Reanalyzing the largest optical imaging survey

Michael Blanton

Center for Cosmology and

Particle Physics

New York University

Sloan Digital Sky Survey Data Release 7:

10,000 square degrees (one-quarter of the entire sky)

100 million galaxies

0.9 million galaxy redshifts

at left, a LOCAL universe sample, within a half billion light-years

The variety of galaxy structures

I. Introduction

Measuring the local sample of galaxies properly

- 1. To study the change in the population of galaxies over time, we need a well-measured local sample, which strangely enough does not yet exist.
- 2. Sky-subtraction is a major issue for the largest sample of nearby galaxies (at least, for the ones measured at high enough resolution)
- 3. Simultaneously, we want to analyze ultraviolet imaging over the same area, because distant samples are in the rest-frame ultraviolet (due to the redshift)
- 4. This motivates a new local atlas of galaxies, the "NASA-Sloan Atlas," based on consistently analyzed wide-field ultraviolet, optical, and near-infrared data

SDSS sky subtraction

A typical SDSS drift scan: shown is standard survey estimate of the sky level

SDSS sky subtraction

To do a better job, we first mask everything that is conceivably an astronomical source

SDSS sky subtraction

Model unmasked pixels with smooth spline, repeat for 30 Tbytes worth of imaging data

SDSS sky subtraction

After subtraction, most residuals are much less than 1% sky background

M101 image

M101 image

3. Fun examples

M101, with standard sky subtraction

The NASA-Sloan Atlas

- 1. Sky-subtracted SDSS
 (optical), GALEX
 (ultraviolet) and
 2MASS (near-infrared)
 images
- 2. Sample of 100,000 galaxies within 500 million lightyears
- 3. Simultaneously deblend and measure in multiple bands, at multiple resolutions
- 4. Do fun science with the results!

GALEX-SDSS images (ultraviolet plus optical)

GALEX-SDSS images (ultraviolet plus optical)

GALEX-SDSS images (ultraviolet plus optical)

"Deblending" overlapping objects

After reanalysis, significantly improved measurements!

size of galaxy

The NASA-Sloan Atlas

- 1. Sky-subtracted SDSS
 (optical), GALEX
 (ultraviolet) and
 2MASS (near-infrared)
 images
- 2. Sample of 100,000 galaxies within 500 million lightyears
- 3. Simultaneously deblend and measure in multiple bands, at multiple resolutions
- 4. Do fun science with the results!

